Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 269, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953314

RESUMO

Several image-based biomedical diagnoses require high-resolution imaging capabilities at large spatial scales. However, conventional microscopes exhibit an inherent trade-off between depth-of-field (DoF) and spatial resolution, and thus require objects to be refocused at each lateral location, which is time consuming. Here, we present a computational imaging platform, termed E2E-BPF microscope, which enables large-area, high-resolution imaging of large-scale objects without serial refocusing. This method involves a physics-incorporated, deep-learned design of binary phase filter (BPF) and jointly optimized deconvolution neural network, which altogether produces high-resolution, high-contrast images over extended depth ranges. We demonstrate the method through numerical simulations and experiments with fluorescently labeled beads, cells and tissue section, and present high-resolution imaging capability over a 15.5-fold larger DoF than the conventional microscope. Our method provides highly effective and scalable strategy for DoF-extended optical imaging system, and is expected to find numerous applications in rapid image-based diagnosis, optical vision, and metrology.

2.
Light Sci Appl ; 12(1): 124, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202421

RESUMO

Optical anisotropy, which is an intrinsic property of many materials, originates from the structural arrangement of molecular structures, and to date, various polarization-sensitive imaging (PSI) methods have been developed to investigate the nature of anisotropic materials. In particular, the recently developed tomographic PSI technologies enable the investigation of anisotropic materials through volumetric mappings of the anisotropy distribution of these materials. However, these reported methods mostly operate on a single scattering model, and are thus not suitable for three-dimensional (3D) PSI imaging of multiple scattering samples. Here, we present a novel reference-free 3D polarization-sensitive computational imaging technique-polarization-sensitive intensity diffraction tomography (PS-IDT)-that enables the reconstruction of 3D anisotropy distribution of both weakly and multiple scattering specimens from multiple intensity-only measurements. A 3D anisotropic object is illuminated by circularly polarized plane waves at various illumination angles to encode the isotropic and anisotropic structural information into 2D intensity information. These information are then recorded separately through two orthogonal analyzer states, and a 3D Jones matrix is iteratively reconstructed based on the vectorial multi-slice beam propagation model and gradient descent method. We demonstrate the 3D anisotropy imaging capabilities of PS-IDT by presenting 3D anisotropy maps of various samples, including potato starch granules and tardigrade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...